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DETERMINATION OF COMPRESSIBILITY FACTORS 
USING SONIC VELOCITY MEASUREMENTS 

Equations of state for gases would be more reliable representations of experimental data if measurements 

of specific volumes could be avoided. This may be accomplished by introduction of the sonic velocity, 

which is relatively easy to measure experimentally, into the thermodynamic network. The specific volume 

may be replaced by an integral, evaluated along an isotherm, involving the sonic velocity, the specific heat 

ratio, and the pressure. Compressibility factors evaluated with this modified equation of state agree 

almost exactly with those obtained from the standard form. 

D ETERMINATION of z through direct application of the equa-
tion pv = zRT is complicated by difficulties in obtain

ing accurate experimental values for v. This may be 
circumvented by employing sonic velocity measurements at 
constant temperature and a series of pressures. A closed 
resonance tube with fixed ends, described elsewhere (2) for a 
different experimental purpose, is a suitable device. A low
amplitude, variable-frequency signal, emitted at one end of the 
tube and detected at the other, defines a sequence of standing 
waves which permits calculation of the sonic velocity in the 
contained gas at a given temperature and pressure. The 
pressure is altered by addition or deletion of gas, maintaining 
constant temperature T 1, and the sonic measurement is re
peated. Hence a set of sonic velocities a = a(p, T 1) is rapidly 
obtained. 

The sonic velocity is related to the state variables by 

(1) 

where s is the entropy and 'Y the specific heat ratio, Cp/ C •. 
Differentiation of the equation of state, p = pzRT, gives 

(op/ op) 7' = 
1 

zRT 

(p/ z) (oz/ op)r 
(2) 

and combining Equations 1 and 2 yields 

(oz/ op)r - zi p = -(-yRT/ a2)(z2/p) (3) 

This expression may be linearized by the change of variable 
u = Z-l and the resulting standard, first-order differential 
equation integrated to give 

p 
(4) 

This solution satisfies Equation 3 and also the required 
condition that lim z = 1 [making use of the property 

p-to 

lim ('YRT/ a2) = 1] . f.p 'Y/ a2 dP has the units of density p. In 
p--+o 0 

fact, Equation 4 may be regarded as a modified equation of 

state wherein PCP, T 1) = f: 'Y/ a2 dP, provided that the inte

gration is performed along the isotherm Tl (as indicated). 
The integral may be evaluated graphically for any p, using 

the experimentally determined set acp, T 1) plus appropriate 
values for 'Y, thus determining the set z(p, TI)' Another run 
of sonic measurements at a new temperature, T 2, permits 
calculation of another set z(p, T 2), etc. 

I t would be desirable and pertinent at this point to determine 
the applicability of Equation 4 using existing sonic measure
ments on a variety of gases. Unfortunately, suitable data are 
severely limited. The literature records many investigations 
of the sonic properties of gases, but only a few data sets show a 
pressure variation sufficient for computing the integral in 
Equation 4. Typically (1) previous workers have been in
terested in fine molecular structure, a type of measurement 
favored by conditions which minimize intermolecular forces . 
Usually operation through a narrow pressure range (ambient 
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or below) has been featured, rather than the sequence of higher 
pressures which would make Equation 4 meaningful. 

An exception is the data set of Herget (4) on ethylene at 
23° C., plotted in Figure 1. As shown, the sonic measurements 
plus the ideal gas point at zero pressure (computed from 

a = V 'YRT) define a smooth curve. This can be used to 
evaluate graphically the integral in Equation 4 when combined 
with suitable values for 'Y, the latter being available from a 
compilation by Din (3). 

Table I summarizes the pertinent calculations for a com
parison of z, determined from Equation 4 and from the equa
tion of state z = pv/ RT (where values for v are also obtained 
from Din's compendium). The figures in the last two rows 
of Table I show virtually perfect agreement, thus amply 
supporting the validity of Equation 4. 

For many cases the variation of 'Y with pressure will be 
negligible, so that the graphical integrations may be performed 
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Figure 1. Sonic velocities in ethylene gas 
at 23 ° C. 

1 48 III. E C FUN DAM E N TAL S 

Table I. Comparison of Compressibility Factors Derived 
from Sonic Velocity and Speciflc V'pI~me Data 

(Ethylene at 23° C. ) 
Pressure, atm. 
-y(=Cp/ C.) [from (3)] 
a, meters/ sec. (from Figure 1 ) 

f.P -y/ a2 dP, atm. (sec. / meter )2 

X 10· (performed graphic
ally) 

v, ce./ g. [from (3)] 

z = - ---'p,--

RT f.
P

-y/ a2 dP 

z = pv/RT 

o 10 20 30 40 
1 .24 1 .30 1 .40 1 .54 1 .82 
332 321 308 292 275 

o 1 .17 2 . 54 4 .22 6 . 31 
c:c 82.2 38.1 23 .1 15 .8 

1 .00 0 .96 0 .89 0 .80 0. 72 

1 .00 0 .95 0 .88 0.80 0. 73 

using a constant 'Y to determine z values. In other instances, 
if an equation of state is already available [either as z = 

z(p, T ) or in another form]' it may be used to evaluate the 
coefficient (()p/ ()ph . Then Equation 1 together with the 
a(p, T ) measurements will determine 'Y as a function of pressure. 

The method should not be used for two-phase systems, or for 
single phases close to the critical point. Under these condi
tions Equation 1 is not applicable, since the density, p, is 
subject to large fluctuations and is not uniquely defined . 
fA modification of Equation 1 for this situation has been dis
cussed by Nozdrev (5).] 

Literature Cited 

(1) Bell, J . F . W. , J. Acoust. Soc. Am. 25, 96 (1953) . 
(2) Cronin, D. J ., Am. J. Phys. 32, 700 (1964) . 
(3) F. Din, ed., "Thermodynamic Functions of Gases," Vol. 2, 

pp. 88-114, Butterworths, London, 1962. 
(4) Herget, C. M., Rev. Sci. Instr . 11, 37 (1940). 
(5) Nozdrev, V. F. , " Use of Ultrasonics in Molecular Physics," 

pp. 254- 8, Macmillan, New York, 1965. 

Trinity University 
San Antonio, T ex. 

G. E. GORING 

RECEIVED for review June 8, 1966 
A CCEP TED October 6, 1966 

PRINT E D I N U. S. A. 


